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Abstract. The logic of tasks can be used in AI as an alternative logic of 
planning and action, its main appeal is that it is immune to the frame problem 
and the knowledge preconditions problem other plan logics confront. A 
drawback the present logic of tasks has is that it is nondecidable (semidecidable 
only). This paper extends the logic of tasks to enable the task description by 
adapting description structure into it. A formal system DTL, which is sound, 
complete and decidable, for agent abilities specification and accomplishablity 
of tasks judgment is proposed.  

1 Introduction 

The semantic used in the logic of tasks can claim to be a formalization of the resource 
philosophy associated with linear logic[4,5,6], if resources are understood as agents 
carrying out tasks. The formalism may also have a potential to be used in AI as an 
alternative logic of planning and action and its main appeal is that it is immune to the 
frame problem and the knowledge preconditions problem other plan logics confront 
[2,10]. A drawback the present logic of tasks has is that it is nondecidable 
(semidecidable only).  

Motivated by the success of description logic[7.8.9], in this paper we present a 
decidable logic system, the description logic of tasks that enable task description by 
adapting the description structure into the logic of tasks. In our paper the task may 
have parameter e.g. we can use C(x) denoting the task to clean x, x can be either room 
or lawn (room and lawn are constant). The expression α→β in our paper means that 
the accomplishment of task α is the condition to accomplish the task β, such as 
F(rake)→C(lawn) and F(mop)→C(room) express that the cleaner can clean the room 
if be given a mop and can clean the lawn if be given a rake respectively.  

A characteristic feature of description languages is their ability to represent other 
kinds of relationships, expressed by role, beyond IS-A relationships. The role has 
what is called a “value restriction,” denoted by the label ∀R. which expresses a 
limitation on the range of types of objects that can fill that role. In this paper we use 
role to express the relation between objects. For example R(room,mop) means that 
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there is certain relation between room and mop (a mop is the necessity tool to clean a 
room). The role has what is called “value restriction” denoted by the label ∀R. too, 
which also expresses the limitation on the range of object that can fill the role. For 
example, the expression ∀R(room,y).F(y)→C(room) means that if be given all 
necessity tools for cleaning a room the cleaner can accomplish the task of cleaning it. 

In addition, we use predict to express the limitation on the range of value of the 
parameter of tasks. For example, if we used predict P to express whether the object is 
in charged of by the cleaner or not, then ∀P(x).(∀R(x,y).F(y)→C(x)) expresses that 
for every object x that the cleaner in charge of,  if be given all necessity tools the 
cleaner can accomplish the task of cleaning x. 

In remain of the paper we will give out the syntax and the semantic of the 
description logic of tasks.  

2  Syntax and Semantic of  the Description Logic of  

Tasks 

2.1. Syntax 

We fix a set of expressions that we call atom task names {A,A1,A2…}, with each of 
which is associated a natural number called its arity, a set of predict name{P,P1, 
P2,…}, with each of which also is associated a natural number called its arity, a set of 
role names { R,R1,R2,…}. 

We also fix an infinite set C ={c0, c1, …} of constants and an infinite set X ={x0, x1, 
x2, …} of variables. We refer to elements of C∪X as terms. 

Definition 2.1 (domain knowledge axioms) Domain knowledge axioms are defined 
as follows:  
1. Let a, b be two constants and R a role name, then R(a,b) is a domain knowledge 

axiom; 
2. Let c1 ,c2, …, cn be constants and P an n-ary predict then P(c1,c2,…,cn) is a domain 

knowledge axiom. 
Definition2.2 (task formula) Task formulas are elements of the smallest class of 

expressions such that: 
1. If A is a n-ary atom task name, t1,t2,…,tn are terms, then A(t1,t2,…,tn) is task 

formula, be called an atomic task; 
2. if P is a n-ary predict, α is a formula, t1,t2,…,tn are terms, then ∀P(t1,t2,…,tn).α and 

∃P(t1,t2,…,tn). α are both task formulas; 
3. If α is a formula, R is an role, t is a term and y is a variable, then ∀R(t,y).α and 

∃R(t,y).α are both task formulas; 
4. if α and β are task formulas, then so are α∧β,α∨β and α→β; 
5. if α and β are task formulas, then so is αПβ; 
6. if α is a formula, x is a variable, then Пxα is a task formula. 
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П and П are called additive operators, or additives. The additive complexity of a 
formula is the number of occurrences of additives in that formula. The task formula 
whose complexity is zero is called primitive task formula and task formula that does 
not contain free variable is call to be closed.  

Except the sets mentioned above, the description logic of tasks also have two other 
sets, the domain knowledge and the capability specification, defined as follows: 

Definition 2.3 (domain knowledge and capability specification) The Domain 
knowledge is a finite set of domain knowledge axioms. The capability specification is 
a finite set of primitive task formulas. 

2.2 Semantic  

Let t1,t2,…,tn be terms, an assignment of (t1,t2,…,tn) is a n-tuple (c1/t1,c2/t2,…,cn/tn) 
such that ci∈C and if ti is constant then ci=ti  for all i(1≤i≤n). Let α be a primitive task 
formula, α(t1/c1,t2/c2,…, tn/cn) is the result of replacing  all free occurrences of ti in α 
by ci respectively (i=1,2,…,n) if ti is a variable. 

We consider interpretation I that consist of a non-empty set ∆I (the domain of the 
interpretation) and an interpretation function ⋅ I, which assigns to every predict P a set 
PI⊆ (∆I)n, to every role R a binary relation RI ⊆ ∆I× ∆I, to every closed atomic task an 
element of {0,1}. To give out the value of all closed primitive task formulas, ⋅ I is 
extended as follows: 

1. (¬α)I=


 =

else1
1   if0 Iα ; 

2. ∀P(t1,t2,…,tn).α=
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else0
  P),...,,(such that   )/,...,/,/(  assignmentevery for  1))/,...,/,/(( if1 I

212211
I
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4. (∀R(a,y).α)I =


 ∈=α

else0
R)(such that  every for  1))/(( if1 II a,bbby ; 

5. (∃R(a,y).α)I =


 =α∈

else0
1))(y/( and R)(such that  constant  aexist   thereif1 II ba,bb ; 

6. (α∧β)I=


 =β=α

else0
1 and 1 if1 II

; 

7. (α∨β)I=
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
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8. (α→β)I=


 =β=α

 else1
0 and 1 if0 II

;  
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We say an interpretation I is coincident with the domain knowledge if it satisfies 
conditions follows: 
1. For every n-tuple of constants (c1,c2,…,cn), (c1,c2,…,cn)∈PI if and only if 

P(c1,c2,…,cn) is in the domain knowledge;  
2. for every 2-tuple of constants (a,b), (a,b) ∈RI if and only if R(a,b) is in the domain 

knowledge.  
Let Γ be a set of primitive task formulas, {x1,x2,…,xn} be the set of all free variable 

that occur in the task formulas in Γ. An interpretation I and an assignment 
(x1/c1,x2/c2,…,xn/cn) is said satisfy Γ if (α(x1/c1,x2/c2,…,xn/cn))I=1  for every formula α 
in Γ. A task formula set Γ is said be not satisfiable if there is no interpretation I and 
assignment (x1/c1,x2/c2,…,xn/cn) satisfy it, else be satisfiable.  

In remain of the paper we only consider the interpretation that is coincident with 
the domain knowledge and assumes that the ability specification is satisfiable. 

Definition 2.5(accomplishability of primitive tasks) Let Γ be the ability 
specification and α a primitive task. Let {x1,x2,…,xn} be the set of all free variables 
that appear in the task formula in the set Γ∪{α}. We say that α is accomplishable if 
for every interpretation I and every assignment (x1/c1,x2/c2,…,xn/cn) of (x1,x2,…,xn) 
that satisfy Γ, we have (α(x1/c1,x2/c2,…,xn/cn))I=1. 

Now we will give out the concept of accomplishable task. The concepts of strategy 
and realization used are same as those in [2].  

Observe that development preserves the basic structure of the formula. I.e. 
1. assume α0=∀P(t1,t2,…,tn).β (or α0=∃P(t1,t2,…,tn).β), then for every realization 

R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀P(t1,t2,…,tn).βi (or 
∃P(t1,t2,…,tn).βi)) (1≤i≤n). For every assignment (t1/c1, t2/c2,…,tn/cn) the sequence 
of βi(t1/c1, t2/c2,…,tn/cn), denoted by [P: t1/c1, t2/c2,…,tn/cn] R,  is an realization of 
β( t1/c1, t2/c2,…,tn/cn). 

2. Assume α0=∀R(t,y).β (or α0=∃R(t,y).β), then for every realization 
R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀R(t,y).βi (or ∃R(t,y).βi) 
(1≤i≤n) and for every constant b the sequence of βi(y/b), denoted by [R:y/b]R , is 
an realization of β(y/b). 

3. Assume α0=β∧γ(or α0=β∨γ), then for every realization R =<α0,α1,α2,…,αm> of α0, 
αi can be expressed as βi ∧γ i (or βi∨γ i) (1≤i≤n) such that <β0,β1,β2,…,βm> and 
<γ0,γ1,γ2,…,γm>, denoted by p(R) and r(R), are realizations of β and γ respectively. 

4. Assume α0=β→γ, then for every realization R =<α0,α1,α2,…,αm> of α0, αi must 
has the form of  βi →γi (1≤i≤n) . <β0,β1,β2,…,βm> and <γ0,γ1,γ2,…,γm> denoted by 
a(R) and c(R), are realizations of β and γ respectively. 
Definition 2.6 We say that an realization R=<α0, α1, α2,…, αm> of a  task formula 

α0 is successful if one of the following conditions holds: 
1. If α0 is an atomic task formula, or α0=¬α and α is an atomic task formula(both 

imply m=0), and α0 is accomplishable; 
2. α0=∀P(t1,t2,…,tn).β and [P: t1/c1, t2/c2,…,tn/cn] R is successful for every assignment 

(t1/c1,t2/c2,…,tn/cn) such that P(c1,c2,…,cn).  
3. α0=∃P(t1,t2,…,tn).β and there is an assignment (t1/c1,t2/c2,…,tn/cn) such that 

P(c1,c2,…,cn)  and [P:t1/c1,t2/c2,…,tn/cn] R  is successful; 
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4. α0=∀R(t,y).β and [R:y/b] R  is successful for every constant b such that R(t,b); 
5. α0=∃R(t,y).β and there is a constant b such that R(t,b) and [R:y/b] R  is successful ; 
6. α0=β∧γ and  p(R) and r(R) both are successful; 
7. α0=β∨γ and either p(R) or r(R) is successful; 
8. α0=β→γ and c(R) if successful if a(R) is successful. 
9. α0 is an additive formula and either m=0 or m≥1 and <α1, α2,…, αm> is successful. 

Definition 2.7 (accomplishability of tasks) Let α be a task formula. If there is an 
action strategy f such that every realization of α with f is successful then we say that α 
is accomplishable. 

3    Accomplishablity judgment of primitive tasks  

In this section the method for accomplishablity judgment of primitive tasks is 
presented. The work in this section is inspired and highly related to F. Baader and 
P. Hanschke’s work for the consistent judgment of description logic formula set [9].  

 For a task formula α, it is accomplishable if and only if  that  Γ∪{¬α} is not 
satisfiable. So here we need only give out the method for satisfiability judgment of 
finite set of primitive task formulas. 

First, we assume that the task formula in the task formula set, denoted by S1, does 
not has R(1) type free variable. A variable of task formula α is said to be R(1) type if 
x is a free variable and α has sub formula has the form ∀R(x,y).β or ∃R(x,y).β. In fact 
if there is a R(1) type free variables x in S1 ,  the number of constant a with a constant 
b such that R(a,b) is in domain knowledge is finite, assume {a1,a2,…,an} is the set of 
all such a, then S1 is satisfiable if and only if at least one of the sets  S1(x/ai) is 
satisfiable. 

Furthermore, we assume that every formula in S1 is in negation normal form, i.e. ¬ 
occurs only immediately before the atom task name, in fact if a task formula in S1 is 
not in negation normal form it can be transformed in to an equivalent one.  

Definition 3.1(transformation rules) Let M be a finite set of finite primitive task 
formula sets. The following rule will replace one of elements S of M by another set 
(or several other sets) of primitive task formulas. 

Rule 1: If α(c1/t1,c2/t2,…,cn/tn)∈S for every assignment  (c1/t1,c2/t2,…,cn/tn) such 
that P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α is a sub formula of one element of S and 
∀P( t1,t2,…,tn). α is not in S, then replace S by  S′=S∪{∀P(t1,t2,…,tn). α}; 

Rule 1′: if P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α∈ S and α(c1/t1,c2/t2,…,cn/tn) is not in S, 
then replace S by S′=S∪{α(c1/t1,c2/t2,…,cn/tn)}; 

Rule 2: if there is an assignment (c1/t1,c2/t2,…,cn/tn) of (t1,t2,…,tn) such that 
P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S, ∃P(t1,t2,…,tn).α is a sub formula of one 
element of S but ∃P(t1,t2,…,tn). α is not in S, then replace S by S′=S∪{∃P(t1,t2,…,tn ). 
α} 

Rule 2′: if ∃P(t1,t2,…,tn).α ∈ S, but there is no assignments (c1/t1,c2/t2,…,cn/tn) such 
that  P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S,  then replace S by sets S∪
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{α(c1/t1,c2/t2,…,cn/tn)} where (c1/t1,c2/t2,…,cn/tn) are all assignments of (t1,t2,…,tn) 
such that P(c1,c2,…,cn); 

Rule 3: if α(y/b)∈ S for every constant b such that R(a,b), ∀R(a,y).α is a sub 
formula of one element of S and ∀R(a,y). α does not in S, then replace S by S′=S∪
{∀R(a,y).α }; 

Rule 3′: if ∀R(a,y).α ∈ S, but there is a constant b such that R(a,b) and  α(y/b) is 
not in S, then replace S by S′=S∪{α(y/b)}; 

Rule 4: if there is a constant b such that R(a,b) and α(y/b)∈ S, ∃R(a,y).α is a sub 
formula of  one element of S but ∃R(a,y).α is not in S, then replace S by S′=S∪
{ ∃R(a,y).α}; 

Rule 4′: if ∃R(a,y).α  ∈ S, but there is not a constant b such that R(a,b) and 
α(y/b)∈ S, assume the set of all constant b such that R(a,b) is {b1,b2,…,bn}, then 
replace  S by  n sets Si= S∪{α(y/bi)}(i=1,2,…,n); 

Rule 5: if α∈ S and β∈ S, α∧β is an sub formula of one element of S, but α∧β is 
not in S, then replace S by S′=S∪{α∧β}; 

Rule 5′: if α∧β∈ S but α and β are not both in S, then replace S by S′=S∪{ α,β}; 
Rule 6:if α∈ S or β∈ S, α∨β is an sub formula of one element of S and α∨β is not 

in S, then replace S by S′=S∪{α∨β}; 
Rule 6′: if α∨β∈ S but none of the α and β is in S, then replace S by S′=S∪{α} 

and S″=S∪{β}; 
Rule 7: ifα→β∈ S and α∈ S but β in not in S, then replace S by S′=S∪{β}; 
Definition 3.2 (clash) We say that a primitive formula set S has a clash if α and 

¬α are both in S for certain task formula α. 
To test whether a finite set of primitive task formulas S1 is satisfiable or not, we set 

M1={S1} and apply the transformation rule in the definition 3.3 to M as long as 
possible then we finally end up with a complete Set Mr i.e. a set to which no rule are 
applicable. The initial set S1 is satisfiable if and only if there is a set in Mr does not 
contain a clash (see the follow part of this section for a proof).  The test procedure can 
be defined in pseudo programming language as follows: 

Algorithm 3.1 (satisfiability judgment) The following procedure takes a finite set 
of primitive formulas as an argument and checks whether it is satisfiable or not. 

Define   procedure check-satisfiable(S1) 
                           r:=1; 
                          M1:={S1} 
                          While ‘a transformation rule is applicable to Mr’  

do 
                                      r:=r+1 
                                      Mr:=apply-a-transformation rule(Mr-1) 
                                od 
                          if ‘there is an S ∈ Mr that does not contain a clash’  

then return YES; 
else return NO.          

For example, let {P(room), R(room, mop)} be the domain knowledge. P(room) 
means that the cleaner is in charge of the room. R(room, mop) means that mop is the 
necessary tool to clean the room. If the ability specification is 
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{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop)}, where ∀P(x).(∀R(x,y).F(y)→C(x)) means that 
for every object x that the cleaner is in charge of,  if be given all necessity tools the 
cleaner can accomplish the task of cleaning it. F(mop) means that the keeper can give 
the cleaner a mop. To judge whether C(room) is accomplishable or not, i.e. whether 
the cleaner can clean the room or not, we need to judge whether the set 
S1={∀P(x).(∀R(x,y).F(y)→C(x)), F(mop),¬C(room)} is satisfiable or not. The set Mi 
generated in the testing  process are: 
M1={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬ C(room)}}; 
M2={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room),∀R(room,y).F(y)→C(room)}}             
( by Rule 1 , ∀P(x).(∀R(x,y).F(y)→C(x) )and P(room) ); 
M3={{∀P(x).(∀R(x,y)F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room), 
∀R (room,y).F(y) } 
( by Rule 3 , R(room, mop) and F(mop) ); 
M4={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room), 
∀R(room,y).F(y), C(room)}} 
 ( by Rule 7, ∀R(room,y).F(y)→C(room) and  ∀R(room,y).F(y) ). 

Then S1 is not satisfiable because there is not a set in M4 that does not contain a 
clash. So we know that C(room) is accomplishable. 

For a primitive task formula β the length of β, denoted by |β|, is inductively 
defined as:  
1. If β is an atomic task formula or β=¬α and α is an atomic task formula, then |β| 

=1; 
2. if β=∀P(t1,t2,…,tn).α or β=∃P(t1,t2,…,tn).α then |β|=|α|+1; 
3. if β=∀R(t,y).α or β=∃ R(t,y).α, then |β|=|α|+1; 
4. if β=α∧γ or β=α∨γ, then |β|=|α|+|γ |; 
5. if β=α→γ, then |β|=|α|+|γ |. 

We call a task formula α that has the form α=β∧γ is a ∧-task. The maximal ∧-
expression of a ∧-task is an express α1∧α2…∧αn such that αi is no long a ∧-task for 
every i(1≤i≤n). If α is a ∧-task and its maximal ∧-expression is α1∧α2…∧αn, then the 
∧-length of α is n. The concept of ∨-task and the ∨-length of a ∨-task, the concept of 
→-task and the →-length of a →-task all can be defined analogously. 

Proposition 3.1 The algorithm 3.1 can always compute a complete set Mr in finite 
time and the initial set S1 is not satisfiable if and only all set in Mr contain a clash.  

Proof: Because the number of different assignments (c1/t1,c2/t2,…,cn/tn) of 
(x1,x2,…,xn) such that P(c1,c2,…,cn) for every predict P that occurs in domain 
knowledge, the number of different sub formulas that has the form ∀P(t1,t2,…,tn).α of 
elements of  S1, the number of different sub formulas that has the form 
∃P(t1,t2,…,tn).α of elements of S1, the number of different constant b which satisfies 
R(a,b) for each pair (a,R) of constant and role that occurs in S1, the number of the sub 
formulas that has the form ∀R(t,y).α of elements of S1,  the number the sub formulas 
that has the form ∃R(t,y).α of elements of S1, the number of the different sub formulas 
that has the form of α∧β of elements of S1  and  the maximal ∧-length of them, the 
number of different sub formula that has the form α∨β of elements of S1 and the 
maximal ∨-length of them, the number of the different formula that has the form 
α→β of the elements of S1 and the maximal →-length of them are all finite, then it 
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can be proved that the rules in definition 3.1 can only be applied for finite times, so 
the computation process will terminate in finite time. 

The second part of the proposition is a consequence of lemma 3.1 and lemma 3.2 
bellows, where the notion of contradictory formula set which is syntactic equivalent 
of not satisfiable formula set is defined by induction on the relation of  “descendant ”. 
A formula set S occurring in the computation is contradictory with respect to the 
computation if and only if 
1. S does not have a descendant and contains a clash or 
2. all descendants of S are contradictory.  

Lemma 3.1 If the initial formula set is contradictory with respect to a given 
computation then it is not satisfiable. 

Proof: The proof is by induction on the definition of contradictory with a case 
analysis according to the transformation rule applied. Assume S1 is a given set of 
formulas which is contradictory with respect to a given computation, we will show 
that it is not satisfiable. 

If S1 does not have a descendant, then it must have a clash. Obviously a set of 
formulas that have a clash is not satisfiable. For the induction step, assume S is 
satiafiable, we have to show that the descendant (resp. one of the descendant in the 
case of rule 2′, rule 4′, and rule 6′ ) of S is satisfiable too, this will be contradiction to 
the induction hypothesis, because all descendants of contradictory set are 
contradictory. 

We shall only demonstrate the case of rule 5. The other cases can be treated 
similarly. Assume that rule 5 is applied to a set, denoted by Sr-1, means that there are 
two formula α and β such that α∈ Sr-1 and β∈ Sr-1 and the descendant of Sr-1, denoted 
by Sr, is equal to Sr-1 ∪ {α∧β}. If the interpretation I and the assignment 
(x1/c1,x2/c2…,xn/cn) satisfy Sr-1, then we have (α(x1/c1,x2/c2…,xn/cn))I=1 and 
(β(x1/c1,x2/c2…,xn/cn))I=1, thus ((α∧β)(x1/c1,x2/c2…,xn/cn))I=1 by the definition of the 
semantic of closed task formulas, so I and (x1/c1,x2/c2…,xn/cn) satisfy Sr too. 

Lemma 3.2 If the initial formula set is not contradictory with respect to a given 
computation then it is satisfiable. 

Proof: If S1 is not contradictory then there is a primitive formula set S⊇ S1 in the 
complete set Mr such that there is no clash in S. Assume the set of all different free 
variable occur in S is {x1,x2,…,xm}, we define an interpretation I=(∆I,⋅I) as follows:  
∆I  is the set of all constants. ⋅I assigns to each constant itself, to each predict P a set 

PI={(a1, a2, … , a n)|ai∈∆I (1≤i≤n) and P(a 1, a2,…, a n)}, to each role R a set 
RI={(a,b)| a,b∈∆I  and R(a,b)}. Let (c1,c2,…,cm) be an arbitrary m-tuple of constants, 
⋅I assigns each atomic task A(a1,a2,…,aj)(j=1,2,3,…)  an element of {0,1} according 
to  following rule: 

A(a1,a2,…,aj)I=


 ∈¬

else1
)/,...,/,/(),...,,(A  if0 221121 mmj cxcxcxSaaa  

We will prove that the interpretation I and the assignment (c1/t1,c2/t2,…,cm/tm) 
satisfy S, so satisfy S1 also. We use induction on the length of α.  

If |α|=1, then α is an atomic task or α=¬β and β is an atomic task. Then 
(α(x1/c1,x2/c2…,xm/cm))I=1 by the definition of  I.  
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Assume |α|=k (k>1), we prove that (α(x1/c1,x2/c2…,xm/cm))I=1. In the case of 
α=∀P(t1,t2,…,tn).β. Mr is complete then we have β(t1/a1,t2/a2,…,tn/an)∈S for every 
assignment (t1/a1,t2/a2,…,tn/an) such that P(a1,a2,…,an), so 
(β(t1/a1,t2/a2,…,tn/an)( x1/c1,x2/c2…,xm/cm))I=1 by the induction hypothesis, so we have 
(α(x1/c1,x2/c2…,xm/cm))I=1. The other cases can be proved analogously. 

4    Logic DTL 

The logic DTL (Description Logic of Tasks) that we are going to define in this section 
is intended to axiomatize the set of accomplishable task formulas. It will be 
mentioned that the concept of quasiaction and quasireaction of a task formula is same 
as those in [2]. 

Definition 4.1 (DTL). The axioms of DTL are all the primitive formulas that are 
accomplishable.  

The rules of inference are 
A-rule: 

   
α
π , where π  is an elementary quasiaction for α. 

R-rule： 

α
πππα e21 ,,,, , where e≥1 and e21 ,,, πππ  are all quasireaction for α, α  is 

the  primitivization of α. 
Theorem 4.1(soundness) Let α be a task formula, if DTL ├ α then α is 

accomplishable. 
Theorem 4.2 (completeness) Let α be a task formula, if α is accomplishable, then 

DTL├α. 
The only different between the logic DTL and the logic L proposed in [2] is the 

different of their axioms. Axioms of DTL are primitive task formulas that are 
accomplishable while the axioms of L are formulas provable in classical first order 
logic. The rules of inference in them are same. Keep in mind that the concept of 
strategy, quasiaction and quasireaction used in this paper are same to those in [2]. So, 
the proof of the soundness, completeness of DTL can be carried out analogically as 
the proof of the corresponding properties of the logic L. 

Theorem 4.3 (decidability) DTL is decidable. 
 Proof: Here is an informal description of a decision procedure for DTL├α, 

together with a proof, by induction on the additive complexity ofα, that the procedure 
takes a finite time. Given a formula α 

(a) If α is primitive, then we can judge whether it is an axiom, i.e. whether it is 
accomplishable  using algorithm 3.1 in finite time by Proposition 3.1. 

(b) If α is not primitive, then the only way it can be proved in DTL is if either one 
of the elementary quasiactions for it is provable, or all of the elementary 
quasireactions for it, together with its primitivization, are provable in DTL. Whether 
the primitivization is provable can be checked in a finite time. Also, as we noted, the 
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number all the elementary quasiactions and quasireactions for α is finite. So, check 
each of them for provability in DTL. If it turns out that either one of the elementary 
quasiactions, or all of the elementary quasireactions together with the primitivization 
of α are provable in DTL, then output “yes”, otherwise output “no”. The additive 
complexities of those elementary quasiactions and quasireactions are lower than the 
additive complexity of α and, by the induction hypothesis, their provability in DTL 
can be checked in a finite time. So that this step, too, can be completed in a finite time. 

5    Conclusion 

The description logic of tasks enable tasks description and have more reasoning 
power, it can be used to structure the cooperation plan system for multi agent system. 
For example, for behavior modeling of large-scale battlefield simulation, we use it to 
describe the ability knowledge of military entities and the relations among them, then 
we can use the reasoning power of it for cooperation actions plan and verification.  
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