
The Description Logic of Tasks1

Zhang Hui Li Sikun

College of Computer Science,
National University of Defense Technology,

Changsha, China
qd_zhanghui@163.com

Abstract. The logic of tasks can be used in AI as an alternative logic of
planning and action, its main appeal is that it is immune to the frame problem
and the knowledge preconditions problem other plan logics confront. A
drawback the present logic of tasks has is that it is nondecidable (semidecidable
only). This paper extends the logic of tasks to enable the task description by
adapting description structure into it. A formal system DTL, which is sound,
complete and decidable, for agent abilities specification and accomplishablity
of tasks judgment is proposed.

1 Introduction

The semantic used in the logic of tasks can claim to be a formalization of the resource
philosophy associated with linear logic[4,5,6], if resources are understood as agents
carrying out tasks. The formalism may also have a potential to be used in AI as an
alternative logic of planning and action and its main appeal is that it is immune to the
frame problem and the knowledge preconditions problem other plan logics confront
[2,10]. A drawback the present logic of tasks has is that it is nondecidable
(semidecidable only).

Motivated by the success of description logic[7.8.9], in this paper we present a
decidable logic system, the description logic of tasks that enable task description by
adapting the description structure into the logic of tasks. In our paper the task may
have parameter e.g. we can use C(x) denoting the task to clean x, x can be either room
or lawn (room and lawn are constant). The expression α→β in our paper means that
the accomplishment of task α is the condition to accomplish the task β, such as
F(rake)→C(lawn) and F(mop)→C(room) express that the cleaner can clean the room
if be given a mop and can clean the lawn if be given a rake respectively.

A characteristic feature of description languages is their ability to represent other
kinds of relationships, expressed by role, beyond IS-A relationships. The role has
what is called a “value restriction,” denoted by the label ∀R. which expresses a
limitation on the range of types of objects that can fill that role. In this paper we use
role to express the relation between objects. For example R(room,mop) means that

1 Supported by the National Grand Fundamental Research 973 Program (2002CB312105) and

863 program (2004AA115130) of China.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 13-22

there is certain relation between room and mop (a mop is the necessity tool to clean a
room). The role has what is called “value restriction” denoted by the label ∀R. too,
which also expresses the limitation on the range of object that can fill the role. For
example, the expression ∀R(room,y).F(y)→C(room) means that if be given all
necessity tools for cleaning a room the cleaner can accomplish the task of cleaning it.

In addition, we use predict to express the limitation on the range of value of the
parameter of tasks. For example, if we used predict P to express whether the object is
in charged of by the cleaner or not, then ∀P(x).(∀R(x,y).F(y)→C(x)) expresses that
for every object x that the cleaner in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning x.

In remain of the paper we will give out the syntax and the semantic of the
description logic of tasks.

2 Syntax and Semantic of the Description Logic of

Tasks

2.1. Syntax

We fix a set of expressions that we call atom task names {A,A1,A2…}, with each of
which is associated a natural number called its arity, a set of predict name{P,P1,
P2,…}, with each of which also is associated a natural number called its arity, a set of
role names { R,R1,R2,…}.

We also fix an infinite set C ={c0, c1, …} of constants and an infinite set X ={x0, x1,
x2, …} of variables. We refer to elements of C∪X as terms.

Definition 2.1 (domain knowledge axioms) Domain knowledge axioms are defined
as follows:
1. Let a, b be two constants and R a role name, then R(a,b) is a domain knowledge

axiom;
2. Let c1 ,c2, …, cn be constants and P an n-ary predict then P(c1,c2,…,cn) is a domain

knowledge axiom.
Definition2.2 (task formula) Task formulas are elements of the smallest class of

expressions such that:
1. If A is a n-ary atom task name, t1,t2,…,tn are terms, then A(t1,t2,…,tn) is task

formula, be called an atomic task;
2. if P is a n-ary predict, α is a formula, t1,t2,…,tn are terms, then ∀P(t1,t2,…,tn).α and

∃P(t1,t2,…,tn). α are both task formulas;
3. If α is a formula, R is an role, t is a term and y is a variable, then ∀R(t,y).α and

∃R(t,y).α are both task formulas;
4. if α and β are task formulas, then so are α∧β,α∨β and α→β;
5. if α and β are task formulas, then so is αПβ;
6. if α is a formula, x is a variable, then Пxα is a task formula.

14 Hui Z., Sikun L.

П and П are called additive operators, or additives. The additive complexity of a
formula is the number of occurrences of additives in that formula. The task formula
whose complexity is zero is called primitive task formula and task formula that does
not contain free variable is call to be closed.

Except the sets mentioned above, the description logic of tasks also have two other
sets, the domain knowledge and the capability specification, defined as follows:

Definition 2.3 (domain knowledge and capability specification) The Domain
knowledge is a finite set of domain knowledge axioms. The capability specification is
a finite set of primitive task formulas.

2.2 Semantic

Let t1,t2,…,tn be terms, an assignment of (t1,t2,…,tn) is a n-tuple (c1/t1,c2/t2,…,cn/tn)
such that ci∈C and if ti is constant then ci=ti for all i(1≤i≤n). Let α be a primitive task
formula, α(t1/c1,t2/c2,…, tn/cn) is the result of replacing all free occurrences of ti in α
by ci respectively (i=1,2,…,n) if ti is a variable.

We consider interpretation I that consist of a non-empty set ∆I (the domain of the
interpretation) and an interpretation function ⋅ I, which assigns to every predict P a set
PI⊆ (∆I)n, to every role R a binary relation RI ⊆ ∆I× ∆I, to every closed atomic task an
element of {0,1}. To give out the value of all closed primitive task formulas, ⋅ I is
extended as follows:

1. (¬α)I=


 =

else1
1 if0 Iα ;

2. ∀P(t1,t2,…,tn).α=



 ∈=α

else0
 P),...,,(such that)/,...,/,/(assignmentevery for 1))/,...,/,/((if1 I

212211
I

2211 nnnnn cccctctctctctct ;

3. ∃P(t1,t2,…,tn).α=



 =α∈

else0
 1))/,...,/,/((and P),...,,(such that) /,...,/,/(assignmentan is thereif1 I

2211
I

212211 nnnnn ctctctcccctctct ;

4. (∀R(a,y).α)I =


 ∈=α

else0
R)(such that every for 1))/((if1 II a,bbby ;

5. (∃R(a,y).α)I =


 =α∈

else0
1))(y/(and R)(such that constant aexist thereif1 II ba,bb ;

6. (α∧β)I=


 =β=α

else0
1 and 1 if1 II

;

7. (α∨β)I=


 =β=α

else0
1or 1 if1 II

;

8. (α→β)I=


 =β=α

 else1
0 and 1 if0 II

;

The Description Logic of Task 15

We say an interpretation I is coincident with the domain knowledge if it satisfies
conditions follows:
1. For every n-tuple of constants (c1,c2,…,cn), (c1,c2,…,cn)∈PI if and only if

P(c1,c2,…,cn) is in the domain knowledge;
2. for every 2-tuple of constants (a,b), (a,b) ∈RI if and only if R(a,b) is in the domain

knowledge.
Let Γ be a set of primitive task formulas, {x1,x2,…,xn} be the set of all free variable

that occur in the task formulas in Γ. An interpretation I and an assignment
(x1/c1,x2/c2,…,xn/cn) is said satisfy Γ if (α(x1/c1,x2/c2,…,xn/cn))I=1 for every formula α
in Γ. A task formula set Γ is said be not satisfiable if there is no interpretation I and
assignment (x1/c1,x2/c2,…,xn/cn) satisfy it, else be satisfiable.

In remain of the paper we only consider the interpretation that is coincident with
the domain knowledge and assumes that the ability specification is satisfiable.

Definition 2.5(accomplishability of primitive tasks) Let Γ be the ability
specification and α a primitive task. Let {x1,x2,…,xn} be the set of all free variables
that appear in the task formula in the set Γ∪{α}. We say that α is accomplishable if
for every interpretation I and every assignment (x1/c1,x2/c2,…,xn/cn) of (x1,x2,…,xn)
that satisfy Γ, we have (α(x1/c1,x2/c2,…,xn/cn))I=1.

Now we will give out the concept of accomplishable task. The concepts of strategy
and realization used are same as those in [2].

Observe that development preserves the basic structure of the formula. I.e.
1. assume α0=∀P(t1,t2,…,tn).β (or α0=∃P(t1,t2,…,tn).β), then for every realization

R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀P(t1,t2,…,tn).βi (or
∃P(t1,t2,…,tn).βi)) (1≤i≤n). For every assignment (t1/c1, t2/c2,…,tn/cn) the sequence
of βi(t1/c1, t2/c2,…,tn/cn), denoted by [P: t1/c1, t2/c2,…,tn/cn] R, is an realization of
β(t1/c1, t2/c2,…,tn/cn).

2. Assume α0=∀R(t,y).β (or α0=∃R(t,y).β), then for every realization
R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀R(t,y).βi (or ∃R(t,y).βi)
(1≤i≤n) and for every constant b the sequence of βi(y/b), denoted by [R:y/b]R , is
an realization of β(y/b).

3. Assume α0=β∧γ(or α0=β∨γ), then for every realization R =<α0,α1,α2,…,αm> of α0,
αi can be expressed as βi ∧γ i (or βi∨γ i) (1≤i≤n) such that <β0,β1,β2,…,βm> and
<γ0,γ1,γ2,…,γm>, denoted by p(R) and r(R), are realizations of β and γ respectively.

4. Assume α0=β→γ, then for every realization R =<α0,α1,α2,…,αm> of α0, αi must
has the form of βi →γi (1≤i≤n) . <β0,β1,β2,…,βm> and <γ0,γ1,γ2,…,γm> denoted by
a(R) and c(R), are realizations of β and γ respectively.
Definition 2.6 We say that an realization R=<α0, α1, α2,…, αm> of a task formula

α0 is successful if one of the following conditions holds:
1. If α0 is an atomic task formula, or α0=¬α and α is an atomic task formula(both

imply m=0), and α0 is accomplishable;
2. α0=∀P(t1,t2,…,tn).β and [P: t1/c1, t2/c2,…,tn/cn] R is successful for every assignment

(t1/c1,t2/c2,…,tn/cn) such that P(c1,c2,…,cn).
3. α0=∃P(t1,t2,…,tn).β and there is an assignment (t1/c1,t2/c2,…,tn/cn) such that

P(c1,c2,…,cn) and [P:t1/c1,t2/c2,…,tn/cn] R is successful;

16 Hui Z., Sikun L.

4. α0=∀R(t,y).β and [R:y/b] R is successful for every constant b such that R(t,b);
5. α0=∃R(t,y).β and there is a constant b such that R(t,b) and [R:y/b] R is successful ;
6. α0=β∧γ and p(R) and r(R) both are successful;
7. α0=β∨γ and either p(R) or r(R) is successful;
8. α0=β→γ and c(R) if successful if a(R) is successful.
9. α0 is an additive formula and either m=0 or m≥1 and <α1, α2,…, αm> is successful.

Definition 2.7 (accomplishability of tasks) Let α be a task formula. If there is an
action strategy f such that every realization of α with f is successful then we say that α
is accomplishable.

3 Accomplishablity judgment of primitive tasks

In this section the method for accomplishablity judgment of primitive tasks is
presented. The work in this section is inspired and highly related to F. Baader and
P. Hanschke’s work for the consistent judgment of description logic formula set [9].

 For a task formula α, it is accomplishable if and only if that Γ∪{¬α} is not
satisfiable. So here we need only give out the method for satisfiability judgment of
finite set of primitive task formulas.

First, we assume that the task formula in the task formula set, denoted by S1, does
not has R(1) type free variable. A variable of task formula α is said to be R(1) type if
x is a free variable and α has sub formula has the form ∀R(x,y).β or ∃R(x,y).β. In fact
if there is a R(1) type free variables x in S1 , the number of constant a with a constant
b such that R(a,b) is in domain knowledge is finite, assume {a1,a2,…,an} is the set of
all such a, then S1 is satisfiable if and only if at least one of the sets S1(x/ai) is
satisfiable.

Furthermore, we assume that every formula in S1 is in negation normal form, i.e. ¬
occurs only immediately before the atom task name, in fact if a task formula in S1 is
not in negation normal form it can be transformed in to an equivalent one.

Definition 3.1(transformation rules) Let M be a finite set of finite primitive task
formula sets. The following rule will replace one of elements S of M by another set
(or several other sets) of primitive task formulas.

Rule 1: If α(c1/t1,c2/t2,…,cn/tn)∈S for every assignment (c1/t1,c2/t2,…,cn/tn) such
that P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α is a sub formula of one element of S and
∀P(t1,t2,…,tn). α is not in S, then replace S by S′=S∪{∀P(t1,t2,…,tn). α};

Rule 1′: if P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α∈ S and α(c1/t1,c2/t2,…,cn/tn) is not in S,
then replace S by S′=S∪{α(c1/t1,c2/t2,…,cn/tn)};

Rule 2: if there is an assignment (c1/t1,c2/t2,…,cn/tn) of (t1,t2,…,tn) such that
P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S, ∃P(t1,t2,…,tn).α is a sub formula of one
element of S but ∃P(t1,t2,…,tn). α is not in S, then replace S by S′=S∪{∃P(t1,t2,…,tn).
α}

Rule 2′: if ∃P(t1,t2,…,tn).α ∈ S, but there is no assignments (c1/t1,c2/t2,…,cn/tn) such
that P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S, then replace S by sets S∪

The Description Logic of Task 17

{α(c1/t1,c2/t2,…,cn/tn)} where (c1/t1,c2/t2,…,cn/tn) are all assignments of (t1,t2,…,tn)
such that P(c1,c2,…,cn);

Rule 3: if α(y/b)∈ S for every constant b such that R(a,b), ∀R(a,y).α is a sub
formula of one element of S and ∀R(a,y). α does not in S, then replace S by S′=S∪
{∀R(a,y).α };

Rule 3′: if ∀R(a,y).α ∈ S, but there is a constant b such that R(a,b) and α(y/b) is
not in S, then replace S by S′=S∪{α(y/b)};

Rule 4: if there is a constant b such that R(a,b) and α(y/b)∈ S, ∃R(a,y).α is a sub
formula of one element of S but ∃R(a,y).α is not in S, then replace S by S′=S∪
{ ∃R(a,y).α};

Rule 4′: if ∃R(a,y).α ∈ S, but there is not a constant b such that R(a,b) and
α(y/b)∈ S, assume the set of all constant b such that R(a,b) is {b1,b2,…,bn}, then
replace S by n sets Si= S∪{α(y/bi)}(i=1,2,…,n);

Rule 5: if α∈ S and β∈ S, α∧β is an sub formula of one element of S, but α∧β is
not in S, then replace S by S′=S∪{α∧β};

Rule 5′: if α∧β∈ S but α and β are not both in S, then replace S by S′=S∪{ α,β};
Rule 6:if α∈ S or β∈ S, α∨β is an sub formula of one element of S and α∨β is not

in S, then replace S by S′=S∪{α∨β};
Rule 6′: if α∨β∈ S but none of the α and β is in S, then replace S by S′=S∪{α}

and S″=S∪{β};
Rule 7: ifα→β∈ S and α∈ S but β in not in S, then replace S by S′=S∪{β};
Definition 3.2 (clash) We say that a primitive formula set S has a clash if α and

¬α are both in S for certain task formula α.
To test whether a finite set of primitive task formulas S1 is satisfiable or not, we set

M1={S1} and apply the transformation rule in the definition 3.3 to M as long as
possible then we finally end up with a complete Set Mr i.e. a set to which no rule are
applicable. The initial set S1 is satisfiable if and only if there is a set in Mr does not
contain a clash (see the follow part of this section for a proof). The test procedure can
be defined in pseudo programming language as follows:

Algorithm 3.1 (satisfiability judgment) The following procedure takes a finite set
of primitive formulas as an argument and checks whether it is satisfiable or not.

Define procedure check-satisfiable(S1)
 r:=1;
 M1:={S1}
 While ‘a transformation rule is applicable to Mr’

do
 r:=r+1
 Mr:=apply-a-transformation rule(Mr-1)
 od
 if ‘there is an S ∈ Mr that does not contain a clash’

then return YES;
else return NO.

For example, let {P(room), R(room, mop)} be the domain knowledge. P(room)
means that the cleaner is in charge of the room. R(room, mop) means that mop is the
necessary tool to clean the room. If the ability specification is

18 Hui Z., Sikun L.

{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop)}, where ∀P(x).(∀R(x,y).F(y)→C(x)) means that
for every object x that the cleaner is in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning it. F(mop) means that the keeper can give
the cleaner a mop. To judge whether C(room) is accomplishable or not, i.e. whether
the cleaner can clean the room or not, we need to judge whether the set
S1={∀P(x).(∀R(x,y).F(y)→C(x)), F(mop),¬C(room)} is satisfiable or not. The set Mi
generated in the testing process are:
M1={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬ C(room)}};
M2={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room),∀R(room,y).F(y)→C(room)}}
(by Rule 1 , ∀P(x).(∀R(x,y).F(y)→C(x))and P(room));
M3={{∀P(x).(∀R(x,y)F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room),
∀R (room,y).F(y) }
(by Rule 3 , R(room, mop) and F(mop));
M4={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room),
∀R(room,y).F(y), C(room)}}
 (by Rule 7, ∀R(room,y).F(y)→C(room) and ∀R(room,y).F(y)).

Then S1 is not satisfiable because there is not a set in M4 that does not contain a
clash. So we know that C(room) is accomplishable.

For a primitive task formula β the length of β, denoted by |β|, is inductively
defined as:
1. If β is an atomic task formula or β=¬α and α is an atomic task formula, then |β|

=1;
2. if β=∀P(t1,t2,…,tn).α or β=∃P(t1,t2,…,tn).α then |β|=|α|+1;
3. if β=∀R(t,y).α or β=∃ R(t,y).α, then |β|=|α|+1;
4. if β=α∧γ or β=α∨γ, then |β|=|α|+|γ |;
5. if β=α→γ, then |β|=|α|+|γ |.

We call a task formula α that has the form α=β∧γ is a ∧-task. The maximal ∧-
expression of a ∧-task is an express α1∧α2…∧αn such that αi is no long a ∧-task for
every i(1≤i≤n). If α is a ∧-task and its maximal ∧-expression is α1∧α2…∧αn, then the
∧-length of α is n. The concept of ∨-task and the ∨-length of a ∨-task, the concept of
→-task and the →-length of a →-task all can be defined analogously.

Proposition 3.1 The algorithm 3.1 can always compute a complete set Mr in finite
time and the initial set S1 is not satisfiable if and only all set in Mr contain a clash.

Proof: Because the number of different assignments (c1/t1,c2/t2,…,cn/tn) of
(x1,x2,…,xn) such that P(c1,c2,…,cn) for every predict P that occurs in domain
knowledge, the number of different sub formulas that has the form ∀P(t1,t2,…,tn).α of
elements of S1, the number of different sub formulas that has the form
∃P(t1,t2,…,tn).α of elements of S1, the number of different constant b which satisfies
R(a,b) for each pair (a,R) of constant and role that occurs in S1, the number of the sub
formulas that has the form ∀R(t,y).α of elements of S1, the number the sub formulas
that has the form ∃R(t,y).α of elements of S1, the number of the different sub formulas
that has the form of α∧β of elements of S1 and the maximal ∧-length of them, the
number of different sub formula that has the form α∨β of elements of S1 and the
maximal ∨-length of them, the number of the different formula that has the form
α→β of the elements of S1 and the maximal →-length of them are all finite, then it

The Description Logic of Task 19

can be proved that the rules in definition 3.1 can only be applied for finite times, so
the computation process will terminate in finite time.

The second part of the proposition is a consequence of lemma 3.1 and lemma 3.2
bellows, where the notion of contradictory formula set which is syntactic equivalent
of not satisfiable formula set is defined by induction on the relation of “descendant ”.
A formula set S occurring in the computation is contradictory with respect to the
computation if and only if
1. S does not have a descendant and contains a clash or
2. all descendants of S are contradictory.

Lemma 3.1 If the initial formula set is contradictory with respect to a given
computation then it is not satisfiable.

Proof: The proof is by induction on the definition of contradictory with a case
analysis according to the transformation rule applied. Assume S1 is a given set of
formulas which is contradictory with respect to a given computation, we will show
that it is not satisfiable.

If S1 does not have a descendant, then it must have a clash. Obviously a set of
formulas that have a clash is not satisfiable. For the induction step, assume S is
satiafiable, we have to show that the descendant (resp. one of the descendant in the
case of rule 2′, rule 4′, and rule 6′) of S is satisfiable too, this will be contradiction to
the induction hypothesis, because all descendants of contradictory set are
contradictory.

We shall only demonstrate the case of rule 5. The other cases can be treated
similarly. Assume that rule 5 is applied to a set, denoted by Sr-1, means that there are
two formula α and β such that α∈ Sr-1 and β∈ Sr-1 and the descendant of Sr-1, denoted
by Sr, is equal to Sr-1 ∪ {α∧β}. If the interpretation I and the assignment
(x1/c1,x2/c2…,xn/cn) satisfy Sr-1, then we have (α(x1/c1,x2/c2…,xn/cn))I=1 and
(β(x1/c1,x2/c2…,xn/cn))I=1, thus ((α∧β)(x1/c1,x2/c2…,xn/cn))I=1 by the definition of the
semantic of closed task formulas, so I and (x1/c1,x2/c2…,xn/cn) satisfy Sr too.

Lemma 3.2 If the initial formula set is not contradictory with respect to a given
computation then it is satisfiable.

Proof: If S1 is not contradictory then there is a primitive formula set S⊇ S1 in the
complete set Mr such that there is no clash in S. Assume the set of all different free
variable occur in S is {x1,x2,…,xm}, we define an interpretation I=(∆I,⋅I) as follows:
∆I is the set of all constants. ⋅I assigns to each constant itself, to each predict P a set

PI={(a1, a2, … , a n)|ai∈∆I (1≤i≤n) and P(a 1, a2,…, a n)}, to each role R a set
RI={(a,b)| a,b∈∆I and R(a,b)}. Let (c1,c2,…,cm) be an arbitrary m-tuple of constants,
⋅I assigns each atomic task A(a1,a2,…,aj)(j=1,2,3,…) an element of {0,1} according
to following rule:

A(a1,a2,…,aj)I=


 ∈¬

else1
)/,...,/,/(),...,,(A if0 221121 mmj cxcxcxSaaa

We will prove that the interpretation I and the assignment (c1/t1,c2/t2,…,cm/tm)
satisfy S, so satisfy S1 also. We use induction on the length of α.

If |α|=1, then α is an atomic task or α=¬β and β is an atomic task. Then
(α(x1/c1,x2/c2…,xm/cm))I=1 by the definition of I.

20 Hui Z., Sikun L.

Assume |α|=k (k>1), we prove that (α(x1/c1,x2/c2…,xm/cm))I=1. In the case of
α=∀P(t1,t2,…,tn).β. Mr is complete then we have β(t1/a1,t2/a2,…,tn/an)∈S for every
assignment (t1/a1,t2/a2,…,tn/an) such that P(a1,a2,…,an), so
(β(t1/a1,t2/a2,…,tn/an)(x1/c1,x2/c2…,xm/cm))I=1 by the induction hypothesis, so we have
(α(x1/c1,x2/c2…,xm/cm))I=1. The other cases can be proved analogously.

4 Logic DTL

The logic DTL (Description Logic of Tasks) that we are going to define in this section
is intended to axiomatize the set of accomplishable task formulas. It will be
mentioned that the concept of quasiaction and quasireaction of a task formula is same
as those in [2].

Definition 4.1 (DTL). The axioms of DTL are all the primitive formulas that are
accomplishable.

The rules of inference are
A-rule:

α
π , where π is an elementary quasiaction for α.

R-rule：

α
πππα e21 ,,,, , where e≥1 and e21 ,,, πππ are all quasireaction for α, α is

the primitivization of α.
Theorem 4.1(soundness) Let α be a task formula, if DTL ├ α then α is

accomplishable.
Theorem 4.2 (completeness) Let α be a task formula, if α is accomplishable, then

DTL├α.
The only different between the logic DTL and the logic L proposed in [2] is the

different of their axioms. Axioms of DTL are primitive task formulas that are
accomplishable while the axioms of L are formulas provable in classical first order
logic. The rules of inference in them are same. Keep in mind that the concept of
strategy, quasiaction and quasireaction used in this paper are same to those in [2]. So,
the proof of the soundness, completeness of DTL can be carried out analogically as
the proof of the corresponding properties of the logic L.

Theorem 4.3 (decidability) DTL is decidable.
 Proof: Here is an informal description of a decision procedure for DTL├α,

together with a proof, by induction on the additive complexity ofα, that the procedure
takes a finite time. Given a formula α

(a) If α is primitive, then we can judge whether it is an axiom, i.e. whether it is
accomplishable using algorithm 3.1 in finite time by Proposition 3.1.

(b) If α is not primitive, then the only way it can be proved in DTL is if either one
of the elementary quasiactions for it is provable, or all of the elementary
quasireactions for it, together with its primitivization, are provable in DTL. Whether
the primitivization is provable can be checked in a finite time. Also, as we noted, the

The Description Logic of Task 21

number all the elementary quasiactions and quasireactions for α is finite. So, check
each of them for provability in DTL. If it turns out that either one of the elementary
quasiactions, or all of the elementary quasireactions together with the primitivization
of α are provable in DTL, then output “yes”, otherwise output “no”. The additive
complexities of those elementary quasiactions and quasireactions are lower than the
additive complexity of α and, by the induction hypothesis, their provability in DTL
can be checked in a finite time. So that this step, too, can be completed in a finite time.

5 Conclusion

The description logic of tasks enable tasks description and have more reasoning
power, it can be used to structure the cooperation plan system for multi agent system.
For example, for behavior modeling of large-scale battlefield simulation, we use it to
describe the ability knowledge of military entities and the relations among them, then
we can use the reasoning power of it for cooperation actions plan and verification.

 References

1. V.Dignum, J.J. Meyer, F. Dignum, H. Weigand. Formal Specification of
Interaction in Agent Societies. In: M. Hinchey, J. Rash, W. Truszkowski, C. Rouff,
D. Gordon-Spears (Eds.): Formal Approaches to Agent-Based Systems (FAABS),
Lecture Notes in Artificial Intelligence, Springer-Verlag, Volume 2699/2003.

2. Giorgi Japaridze, The logic of tasks, Annals of Pure and Applied Logic 117 (2002).
3. Peep Küngas Analysing AI Planning Problems in Linear Logic – A Partial

Deduction Approach Lecture Notes in Computer Science Volume 3171/2004.
4. Peep Küngas, Mihhail Matskin Linear Logic, Partial Deduction and Cooperative

Problem Solving Lecture Notes in Computer Science Volume 2990/2004.
5. G.Japaridze, Introduction to computability logic. Annals of Pure and Applied

Logic, vol. 123 (2003).
6. A. Blass, A game semantics for linear logic, Ann. Pure Appl. Logic 56 /1992.
7. F. Baader etc. The Description Logic Handbook: Theory, Implementation and

Applications. Cambridge, Cambridge University Press 2002.
8. F. Baader and U. Sattler. Tableau Algorithms for Description Logics ，Lecture

Notes In Computer Science，Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods ,2000.

9. F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. DFKI Research Report RR-91-10, Deutsches
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1991.

10.S. Russel, P. Norwig, Artificial Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cli9s, NJ,1995.

22 Hui Z., Sikun L.

